BDL COMPACT VESSEL CLEANER (BDL CVC): CONCEPT EVALUATION

Team 2: Steven Schwartz, Mason Minitti, Muath Nasrallah, Milo Gubler

Project Description

- <u>Project Goal:</u> To develop a pump system capable of cleaning 3D support material from vasculature models and improve In-vitro flow model conditions.
- <u>Importance</u>: In-vitro model is a necessary component of medical device testing in the BDL
- <u>Sponsor:</u> Dr. Tim Becker (NAU ME Faculty & BDL Principal Investigator)
- Mentor: Mana Alyami (NAU ME Graduate & Device Manufacturer at W.L. Gore©)

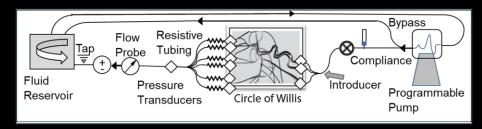


Figure 1: In-Vitro Flow Model Schematic

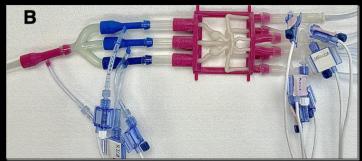


Figure 2: Circle of Willis Model

Black Box Model

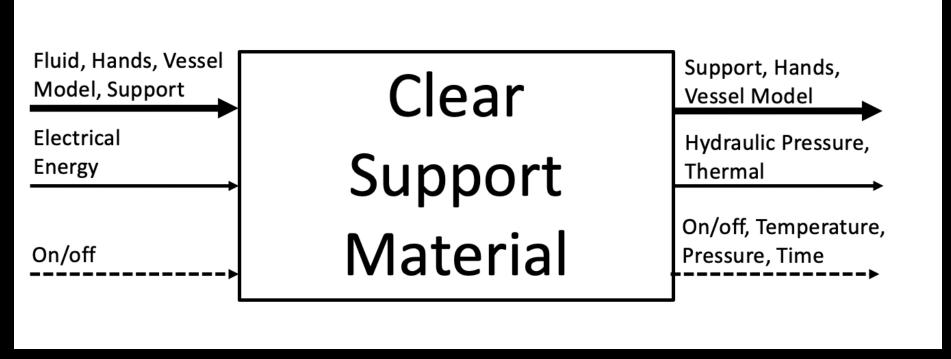


Figure 3: Black Box model

Steven Schwartz – BDL CVC

Functional Modeling

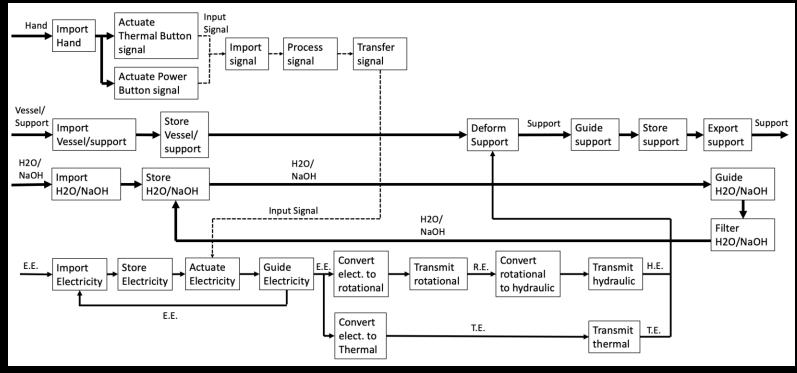


Figure 4: Functional Model

Concept Generation

Evaluated Concepts:

- Heating
- Sensors*
- Filtration methods
- Frame Material
- Transportation*

All concepts were evaluated using a Morph Matrix/Decision Matrix hybrid method

* Little to no coverage in presentation for consideration of time

Muath Nasrallah – BDL CVC

Sample Concept Variants

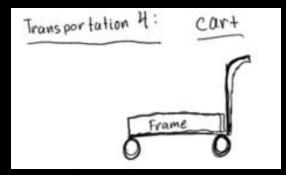


Figure 5: Cart Design

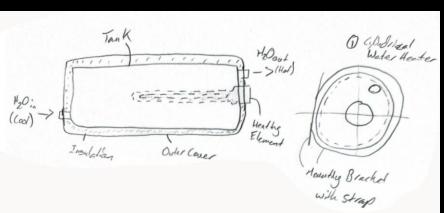


Figure 6: Heating Design

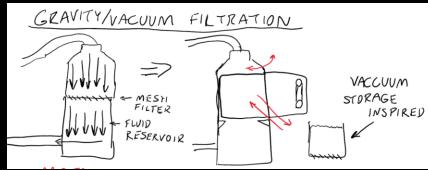


Figure 7: Filtration Model

Decision Matrices

Table 1: Heating Element Decision Matrix

Heating Element			Hot plate	Camco heating		
Criteria	Weight (%)	Score	Weighted Score	Score	Weighted Score	
Cost	0.3	5	1.5	10	3	
Waterproof	0.3	4	1.2	7	2.1	
Safe	0.2	5	1	6	1.2	
Control	0.2	7	1.4	5	1	
Total	1	21	5.1	28	7.3	

Decision Matrices (Continued)

Table 2: Frame Material Decision Matrix

Frame Material		Wood		Concrete		Steel	
Criteria	Weight %	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Manufacturable	0.5	7	3.5	2	1	6	3
Strength	0.2	6	1.2	10	2	10	2
Cost	0.3	10	3	6	1.8	4	1.2
Total	1	23	7.7	18	4.8	20	6.2

Muath Nasrallah – BDL CVC

Decision Matrices (Continued)

Table 3: Filtration Decision Matrix

Filtration		Vacuum		С	lamping	Branch		
					Weighted		Weighted	
Criteria	Weight %	Score	Weighted Score	Score	Score	Score	Score	
Cost	0.3	3	0.9	5	1.5	7	2.1	
Manufacturable	0.3	3	0.9	5	1.5	8	2.4	
Efficiency	0.2	6	1.2	4	0.8	6	1.2	
Recycling Material	0.2	8	1.6	6	1.2	6	1.2	
Total	1	23	4.6	20	5	27	6.9	

Preliminary Design (Flowchart)

• Based on Functional Modeling and Final concepts.

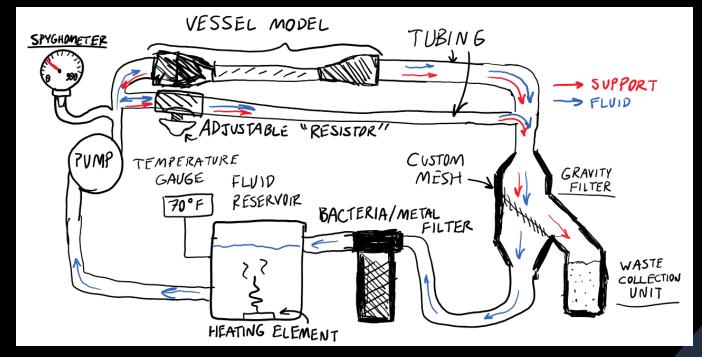


Figure 8: Design Flowchart

Preliminary Design (CAD)

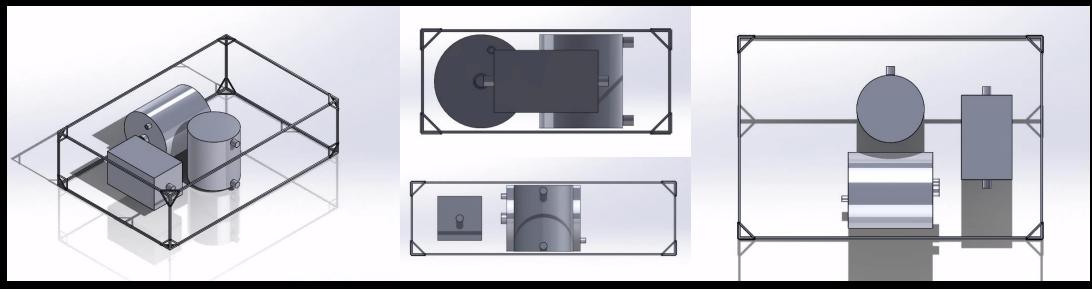


Figure 9: Preliminary Assembly Model (Left): Isometric view, (Top): Right view, (Bottom): Front View, (Right): Top view

Milo Gubler - BDL CVC

Budget Planning

Total values for each item:

- Sensors/Electronics: \$118.34

- Filtration: \$155.43

- Frame Materials: \$23

- Fluid Elements: \$63

- Vessel Models: \$150

- Taxes: \$51

Predicted Expenses: <u>\$560.74</u>

Contingency Budget: <u>\$939.25</u>

Table 4: Bill of Materials

Bill of Materials	\$
sphygmomanometer	16.95
Pump	32.99
Temperature gauge	27.99
Fluid Reservior	27.99
Metal Filter	13.99
Gravity Filter	109.94
Waste Collection Unit	15.49
Custom Mesh	15.99
Tubing	1.73
Heating Element	39.99
Introducer	38.76
Vessel Material	109
screw	8.97
wood	14.3
Arduino Board	26
Thermocouple	7.39

Mason Minitti – BDL CVC

Fulfilled Customer Needs

- Measures Pressure, Temperature, and Time
- Includes Fluid Reservoir and Fluid Pump
- Supplies Heat to Fluid Reservoir
- Filters Support Material from Fluid
- Within Budget and Dimensional Constraints

Muath Nasrallah – BDL CVC

References

Table 5: Commercial Supplies URL List

Reference								
https://www.amazon.com/s?k=sphygmomanometer&crid=1C294IYWLTOKB&sprefix=%2Caps%2C1204&ref=nb_s	sb_noss							
https://www.amazon.com/Pumteck-Electric-Inflation-Basketball-Volleyball/dp/B0869379NP/ref=sr_1_8?crid=3O6PKYX7UEZQ3&keywords=Pump&qid=1645627575&sprefix								
https://www.amazon.com/Etekcity-Lasergrip-774-Non-contact-Thermometer/dp/B00837ZGRY/ref=sr 1 8?keywords=Temperature+gauge&qid=1645627661&sr=8-8								
https://www.amazon.com/s?k=Fluid+Reservior&crid=33GRRJEHO6ZWU&sprefix=fluid+reservoir%2Caps%2C477&ref=nb_sb_noss_1								
https://www.amazon.com/Stainless-LHS-Paperless-Reusable-Non-slip/dp/B07MX87HH9/ref=sr_1_1?keywords=Metal+Filter&qid=1645627753&sr=8-1								
https://www.amazon.com/Platypus-GravityWorks-High-Capacity-Emergency-Preparedness/dp/B00G4V4IVQ/ref=sr_1_5_mod_primary_new?keywords=Gravity+Filter&qid=1645								
https://www.amazon.com/s?k=waste+collection+unit+sg400&crid=RB99T8B1REGR&sprefix=Waste+Collection+Unit%2Caps%2C659&ref=nb_sb_ss_ts-doa-p_1_21								
https://www.amazon.com/AggAuto-Universal-Grill-Mesh-Multifunctional/dp/B08PBF1SLJ/ref=sr_1_5?crid=26VZH0P2AE9Y&keywords=custom+mesh&qid=1645627919&spref								
https://www.amazon.com/s?k=Tubing&crid=3VACGHU02PUG&sprefix=tubing%2Caps%2C507&ref=nb_sb_noss_1								
https://www.amazon.com/s?k=Heating+Element&ref=nb_sb_noss								
https://www.amazon.com/s?k=Introducer&crid=30NEW10NH78ME&sprefix=introducer%2Caps%2C1634&ref=nl	b_sb_noss							
https://www.amazon.com/s?k=Vessel+Material&crid=2G00N1FU8WBMC&sprefix=%2Caps%2C466&ref=nb_sb_noss								
https://www.homedepot.com/p/Grip-Rite-10-x-3-1-2-in-Philips-Bugle-Head-Coarse-Thread-Sharp-Point-Polymer-Coated-Exterior-Screw-1lb-Pack-PTN312S1/100161193								
https://www.homedepot.com/p/LP-SmartSide-SmartSide-440-Series-Cedar-Texture-Trim-Engineered-Treated-Wood-Siding-Application-As-4-in-x-8-ft-25879/300015533								
https://www.amazon.com/Arduino-A000066-ARDUINO-UNO-R3/dp/B008GRTSV6/ref=asc_df_B008GRTSV6/?tag=hyprod-20&linkCode=df0&hvadid=309751315916&hvpos=&h								
$https://www.amazon.com/HiLetgo-MAX6675-Thermocouple-Temperature-Arduino/dp/B01HT871SO/ref=sr_1_1_sspa? keywords=thermocouple+arduino\&qid=1645659533\&qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq$								

Mason Minitti – BDL CVC

Questions?

BDL CVC Team 15